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Solute trapping in directional solidification at high speed:
A one-dimensional study with the phase-field model

M. Conti
Dipartimento di Matematica e Fisica, Universiti Camerino, 62032 Camerino, ltaly
(Received 3 March 1997

The rapid solidification of a binary alloy, directed by a moving temperature field, is studied with the
phase-field model. Unlike previous findings solute segregation at the interface can be properly described
through the usual formulation of the model, without concentration gradient corrections. The governing equa-
tions of the model are numerically solved to determine the interface temperature and the solute concentration
field as a function of the interface velocity. The partition coefficienk(v) is monotonically increasing
towards unity at large growth rates; the interface temperakuffst rises, then falls with increasing The
results show good agreement with the predictions of the continuous growth model of Aziz and Bogktinger
J. Aziz and W. J. Boettinger, Acta Metall. Matel2, 527 (1994 ). [S1063-651X97)12408-4

PACS numbe(s): 64.70.Dv, 68.10.Gw, 81.30.Bx, 82.65.Dp

Rapid solidification of binary alloys is addressed throughtraction of the solute profile at large velocities.
sharp interface or phase-field models. Sharp interface models It is the aim of the present study to show that the phase-
[1,2] utilize the diffusion equation to describe the transportfield model, in the more natural formulation given [§,7],
of heat and solute through the bulk phases; the interfaceontains all the ingredients for a proper description of solute
boundary conditions reflect two different constrairit:the  trapping. A large but finite diffusional velocityy for the
energy and solute conservation across the moving front, aﬂaterfaqial SOlute_ rEdiS_tri_bUtion _iS natura"y embeddEd in the
(i) constitutive laws that relate the local interface conditionsdoverning equations; it is precisely the sharp interface limit
(concentratiorc and temperatur&) to the front velocityy.  taken in[6,7] that, pushing 4 towards infinity, precluded the
Point (ii) requires a separate modellization of the interface?0SSiPility of solute trapping prediction. .
kinetics on a microscopic scale, and was addressed by Aziz Th_e sol|(j|f|cat|o_n process, dr|ver_1 by a moving tempera-
[3], Aziz and Kaplar{4] and Aziz and Boettingdi5] within turg field, \_N|II be S|mylate(_j in one Q|men5|on. The system is
the continuous growth modéCGM). They pointed out that 2" ideal binary solution with constituents(solven andB
the solute redistribution across the solid-liquid interface is(SOlute. Initially a solid (x<xo) and a liquid &> x,) region
driven by a diffusional mechanism characterized by a veloc2re separated by an interface at temperalyreThe solute
ity scalevy~D/a, whereD is the interface solute diffusivity concentration in the solid and liquid phases is fixed to the
anda is a length representative of the interface thickness; agquilibrium values aT, . Then the temperature field, charac-
the front velocity becomes of the orderwf this mechanism terized by a positive uniform gradie/@, is pulled towards
becomes less effective and the partition coefficinf) (i.e.,  the positivex direction at constant velocity,, and the so-
the ratiocs/c, of solute concentration in the growing solid to lidification front follows the advancing isotherms. This ar-
that in the liquid at the interfagadeviates from the equilib- rangement is well representative of standard directional so-
rium value k., increasing towards unity at large growth lidification experiments, when heat diffusion is much faster
rates. This phenomenon, well known in rapid solidificationthan solute diffusion, and allows one to decouple the tem-
experiments, is termed “solute trapping.” perature from the concentration and the phase fields.
Within the phase-field mod€¢PFM), a phase fields(x,t) The problem will be treated in nondimensional form, scal-
characterizes the phase of the system at each point; a fre#g lengths to some reference lengtand time to£%/D;, D,
energy (or entropy functional, depending o, T, ¢ and  being the solute diffusivity in the liquid phase. A nondimen-
including gradient correction ternigenerally forg along is ~ sional temperature is defined as=C(T—Tp)/L", where
then extremized in respect to these variables, to derive th@’,?1 andL”? are the melting temperature and the latent heat of
dynamic equations for the process. Wheeler, Boettinger, anthhe pure solventC is the specific heat for which we assume
McFadden[6] were the first to apply the PFM to alloy so- equal values for both solvent and solute, in both phases. The
lidification, in the isothermal limit. They started from a free- model is presented in full details [6,9,10; in the limit (T
energy functional including a¥{¢)? term and conducted an —T,)<T, the governing equations become
asymptotic analysis of the governing equations for a vanish-
ing small interface thickness; the partition coefficiénte- do )
sulted in a decreasing function of the front velocity, and the —t=[(1—c)n+c]mV ¢—[(1—c)n+c]m
authors concluded that the model was unable to predict sol-

ute trapping. The same conclusion could be drawn from the dg(¢) aPu dp(¢)

sharp interface limit of a slightly different version of the X1 (1—c) = A o

model proposed by Caginalp and Joh@s In a successive € d¢ € do

study Wheeler, Boettinger, and McFadd@&h recovered the B

correct dependende(v) through the inclusion in the free- i do(¢) «a (utu*) dp(¢) A
energy functional of a{c)? term, acting to oppose the con- €2 do¢ €eBL do

1063-651X/97/563)/37174)/$10.00 56 3717 © 1997 The American Physical Society



3718 BRIEF REPORTS 56

TABLE |. Material parameters for the Ni-Cu alloy.

Jc
— =V M@ Ve—c(1-oNP)HA(¢.T)

Nickel Copper
—HB(¢, T)IVep—c(1—c)N(H)T(¢,T)VU}, (2) T (K) 1728 1358
L (Jiend) 2350 1728
a_“:_ 07_“: _ v (cmP/mol)@ 7.0 7.8
0 VoG. 3
at IxX o (Jlend) 3.7x10°° 2.8X10°°
b
In Eq. (1) g(¢)=(1/14)¢?*(1— ¢)? is a symmetric double- g,(((:cmr:FK/ss)) 1?? 101,958

well potential with equal minima ab=0 and¢=1; p(¢) is
a monotonically increasing function @ from p(0)=0 in AN average value of 7.4 will be taken.

the solid top(1)=1 in the liquid; with the choicep($)  PFrom the estimation of Willneckeet al.[12].
= ¢3(10—15¢+6¢%) the bulk solid and liquid are de-

scribed by¢=0 and ¢ =1, respectively, for every value of hB/hA= oATB/oBTA . ®)
temperature. m m
In Eq. (2) the functionH*(¢,T) is given by To estimate the above parameters we referred to the termo-

physical properties of nickelsolven} and copper(solute,
(4) summarized in Table I. The length scale was fixed¢at
=2.1X10 * cm; a realistic value oh” was selected as"

) < the molar vol & is i ot g~ 108 1077 cm. With this choice it results imeT, /TA
wherev,, is the molar volume an® is the gas constant; a _ BT /7B _ A_ -4 B_
similar expression holds forH®(¢,T). The function 39562, o, /Tp=347.28, ¢"=8.00<10°%, € =8.02

o X104, WA=0.965, WP=0.961, L=0.735, m=350, n
I'(¢.T) is given by =1.01. The nondimensional temperature gradient was fixed
p(¢) vy LA atG=2.3.
I'o,T)=-— T2 RC (LA-LB) (5) The evolution of Egs(1)—(3) has been considered in one
spatial dimension, in the domain<k<x,, with x,, large
and\(¢), defined as enough to prevent finite-size effects. Fluxless boundary con-
ditions for ¢,c and transparent conditions far were im-
posed at the domain’s walls.
) (6) To discretize the equations second order in space and first
order in time, finite-difference approximations were utilized.
describes the smooth transition of the bulk solute diffusivity Then, an explicit scheme was employed to advance the
from Dy (in the solid to D, (in the liquid). solution forward in tlme. To ensure an acc_urate res_olutlon of
both the phase field and concentration profiles, the
rid spacing was selected asx=0.5¢*; a time step
t=2.0x 10 *° was required for numerical stability. Except
for temperatures, dimensionless units will be used to illus-
trate the numerical results.

dg(4) vmdp(¢) A T—Tn
d¢ R do¢ TT,

HA(p, T)=WA

Ds Ds
)\(¢)=E+p(¢>)(1—ﬁl

The model parametera™® e*8 WAB mn,L,u* were
associated to the physical properties of the alloy componen
by Warren and BoettingdrlQ]; below only the results are
synthesized:

LAB g AB hAB The initial concentration of the alloy is set to_,
AB____ , eMB=— =0.056 09 for the solid phaséx<xy; ¢=0) and c,.,
CT, 6v20"° 3 =0.070 68 for the liquid phasé>xgy; ¢=1). This corre-
sponds to an equilibrium temperatufg= .06 K. Then
5 d ilibri ife=1706.06 K. Th
ag Um 120%° %Py the initial temperature profile, defined as
"R yaTABRAET T DILE _
T(X,00=T,+G(x—Xp), 9
pro Tyl C(Th—Tw)

=581 =, is pulled toward the positive direction with constant veloc-
BZo Tl L ity Vo. After a transient the solidification front selects a
steady interface temperatufg, following the advancing
) isotherms with their same velocity, and the solid phase
' grows with uniform concentration, ., . The solute segrega-
tion on the moving front is evaluated computing the maxi-
wherec”® is the surface tension of pureor B; g4 isthe  mum valuec,,, of c(x,t), that identifies the concentration
kinetic undercooling coefficient, that relates the interface ung, on the liquid side of the interface. We examined two dif-
dercooling to the interface velocity through= BA'B(TQ’B ferent cases, with the solute diffusivity in the solid=D,
—T). In the phase-field model for a pure substance the inand the more realistic situation with;=10"°D,; we will
terface thickness is a free and independent parameter that hfast analyze the casB,=D, .
been indicated in Eq7) throughh”B, It can be showi10] Figure 1 shows, in thec(T) plane, the portion of the
that a model constraint impose4W"= 8 WP?; then the equilibrium phase diagram in which we are interested, com-
condition is forced: puted from the data of Table I. The vertical line corresponds

E:

I_ll_
> W
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FIG. 1. A portion of the equilibrium phase diagram of the Ni-Cu
alloy, computed from the data given in Table I. The vertical line
corresponds to the value of, ., used in the simulations. The solid
dots represent the pairs {4, T;) corresponding to the steady solu-

tions found in the present study. Thi, line is also indicated

FIG. 2. Normalized concentration profile for=800,D,=D,;
X, represent the position of the solid-liquid interface, identified at

(dashed curve whether or not solute drafgt,5] is neglected in the dissipa-
tion of the free energy that drives solidification.

to the valuec, ., ; it is also indicated on the grapldashed Figure 2 shows the solute profile normalized &)

curve the T, line, i.e., the locus of the pairs, T for which ~ =[¢(X)—C.»}/(Cmax—C+<), for v=2800. We observe that the

the Helmholtz free energy of the liquid and solid are equaltransition ofc(x) at the interface takes place within a length
The solid dots superimposed on the graph represent the paiifsat is approximatelya=2x10"%; then the diffusional ve-
Cmax,T) COrresponding to the steady solutions found in thelocity should bevy=500 (hereD=D,=1). We utilized this
numerical simulations; along this path the front velocity isVvalue to computé(v) through Eq.(10); in Fig. 3 the results
increasing from right to left. It can be observed that, as theare reported, along with the numerical valugsg,/c.... ob-
velocity increases, the values of,,, approach monotoni- tained in the simulations; as it can be observed, the agree-
cally the prescribed value, .,.=0.070 68; this limiting case ment is quite good.

corresponds to partitionless solidification and complete sol- Figure 4 shows the numerical results for the interface
ute trapping. For small velocity a low undercooling is re-temperature as a function of the interface velocity; on the
quired for the solidification front to advance, and the inter-
face temperaturd, is only slightly below the equilibrium

liquidus temperature; as a consequerigeincreases with H
v. At higher velocities, when the level of solute trapping 098 |
nears completion], drops with increasing speed, reflecting
an increasing undercooling below the liquidus temperature. 096 I
The continuous growth modE8-5] gives the dependence
of the partition coefficient on the growth velocity in the form 094
Ket+uvlv Z 092 t
)= T, U
d 090 |
wherevy is a characteristic velocity describing the diffu- 8 |
sional solute redistribution across the interface; a natural
choice isvy=D/a, whereD is the interface diffusivity and 0.86 -
a is the thickness of the concentration transition layer. In the
same model the dependence of the interface temperature on ¢4 - - - L

velocity is given, for dilute alloys, by 0.50 0.00 0.50 1.00 1.50 2.00

log ,(v/v;)

MiC.. [1—k+ v In(k/ke)] v 11

k 1-ke ,BA’ FIG. 3. Partition coefficienk(v) vs the front velocity, forDg

=D,. The solids dots correspond to the values, /c,,, found
wherem, is the slope of the equilibrium liquidus line; the with the present model; the solid line represents the predictions of
parametery is equal tok or equal to unit depending on the continuous growth modgEq. (10)].

T=Th+
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FIG. 4. Interface temperature vs the front velocity, FDg FIG. 5. Partition coefficienk(v) vs the front velocity, forDg

—10-6 :

=D, . The results of the present modeblid dotg are compared — 210 °Di. The solid dots correspond to the values. /Crnay found

with the predictions of the continuous growth model with solute With the_present model; the solid line represents the predictions of
drag (solid line) and without solute dra¢dashed ling the continuous growth modéEq. (10)].

same graph we superimposed the curves computed througiiowth model[Eq. (10)] with the present numerical results;
Eq. (11) with y=k(v) andy=1. The temperatures obtained here too the agreement is quite satisfactory.
with the present phase-field model more closely agree with In summary, the phase-field model, in its simpler version
the predictions of the continuous growth model when soluténcluding only the¢ gradient correction, has proved able to
drag is taken into account; as previously argued by WheeleRredict solute trapping in rapid solidification of binary alloys.
Boettinger, and McFadddm], this is due to the fact that the This point was not previously recognized, as the asymptotic
phase-field model naturally includes surface excesses ar@nalysis in the sharp interface limit—0 [6,7] naturally re-
their transport during solidification. sults in an instantaneous re-equilibration of solute and sol-
When the solute diffusivity in the soliB is much lower vent across the moving front, with the diffusional velocity
thanD,, we should expect a reduced effective interface dif-vq~ D/ e pushed towards infinity; on the contrary solute trap-
fusivity and a lower value fopy. ForD,=10 °D, we com-  ping, as shown by the continuous growth model, occurs as
puted the partition coefficierk(v) asc,../Cna and ex- the front velocity becomes of the order of, or greater than,
tracted the value of 4 through Eq.(10) as Ug-
It is worth noting that dropping from the model the
1-k(v) c-gradient term, introduced by Wheeler, Boettinger, and Mc-
v K(v)—Ke’ (12) Fadder[ 8] to recover the trapping effect, lowers the order of
the differential equation for the solute field, giving a substan-
The best fit of the data giveg;= 290; then, using this value, tially different picture of the process, and allows an easier
in Fig. 5 we compare the predictions of the continuousnumerical treatment of the governing equations.
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