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Solute trapping in directional solidification at high speed:
A one-dimensional study with the phase-field model

M. Conti
Dipartimento di Matematica e Fisica, Universita` di Camerino, 62032 Camerino, Italy

~Received 3 March 1997!

The rapid solidification of a binary alloy, directed by a moving temperature field, is studied with the
phase-field model. Unlike previous findings solute segregation at the interface can be properly described
through the usual formulation of the model, without concentration gradient corrections. The governing equa-
tions of the model are numerically solved to determine the interface temperature and the solute concentration
field as a function of the interface velocityv. The partition coefficientk(v) is monotonically increasing
towards unity at large growth rates; the interface temperatureTI first rises, then falls with increasingv. The
results show good agreement with the predictions of the continuous growth model of Aziz and Boettinger@M.
J. Aziz and W. J. Boettinger, Acta Metall. Mater.42, 527 ~1994!#. @S1063-651X~97!12408-4#

PACS number~s!: 64.70.Dv, 68.10.Gw, 81.30.Bx, 82.65.Dp
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Rapid solidification of binary alloys is addressed throu
sharp interface or phase-field models. Sharp interface mo
@1,2# utilize the diffusion equation to describe the transp
of heat and solute through the bulk phases; the interf
boundary conditions reflect two different constraints:~i! the
energy and solute conservation across the moving front,
~ii ! constitutive laws that relate the local interface conditio
~concentrationc and temperatureT! to the front velocityv.
Point ~ii ! requires a separate modellization of the interfa
kinetics on a microscopic scale, and was addressed by
@3#, Aziz and Kaplan@4# and Aziz and Boettinger@5# within
the continuous growth model~CGM!. They pointed out that
the solute redistribution across the solid-liquid interface
driven by a diffusional mechanism characterized by a vel
ity scalevd;D/a, whereD is the interface solute diffusivity
anda is a length representative of the interface thickness
the front velocity becomes of the order ofvd this mechanism
becomes less effective and the partition coefficientk(v) ~i.e.,
the ratiocs /cl of solute concentration in the growing solid
that in the liquid at the interface! deviates from the equilib-
rium value ke , increasing towards unity at large grow
rates. This phenomenon, well known in rapid solidificati
experiments, is termed ‘‘solute trapping.’’

Within the phase-field model~PFM!, a phase fieldf(x,t)
characterizes the phase of the system at each point; a
energy ~or entropy! functional, depending onf, T, c and
including gradient correction terms~generally forf alone! is
then extremized in respect to these variables, to derive
dynamic equations for the process. Wheeler, Boettinger,
McFadden@6# were the first to apply the PFM to alloy so
lidification, in the isothermal limit. They started from a fre
energy functional including a (¹f)2 term and conducted a
asymptotic analysis of the governing equations for a van
ing small interface thickness; the partition coefficientk re-
sulted in a decreasing function of the front velocity, and
authors concluded that the model was unable to predict
ute trapping. The same conclusion could be drawn from
sharp interface limit of a slightly different version of th
model proposed by Caginalp and Jones@7#. In a successive
study Wheeler, Boettinger, and McFadden@8# recovered the
correct dependencek(v) through the inclusion in the free
energy functional of a (¹c)2 term, acting to oppose the con
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traction of the solute profile at large velocities.
It is the aim of the present study to show that the pha

field model, in the more natural formulation given by@6,7#,
contains all the ingredients for a proper description of sol
trapping. A large but finite diffusional velocityvd for the
interfacial solute redistribution is naturally embedded in t
governing equations; it is precisely the sharp interface li
taken in@6,7# that, pushingvd towards infinity, precluded the
possibility of solute trapping prediction.

The solidification process, driven by a moving tempe
ture field, will be simulated in one dimension. The system
an ideal binary solution with constituentsA ~solvent! andB
~solute!. Initially a solid (x,x0) and a liquid (x.x0) region
are separated by an interface at temperatureT̄I . The solute
concentration in the solid and liquid phases is fixed to
equilibrium values atT̄I . Then the temperature field, chara
terized by a positive uniform gradientG, is pulled towards
the positivex direction at constant velocityV0 , and the so-
lidification front follows the advancing isotherms. This a
rangement is well representative of standard directional
lidification experiments, when heat diffusion is much fas
than solute diffusion, and allows one to decouple the te
perature from the concentration and the phase fields.

The problem will be treated in nondimensional form, sc
ing lengths to some reference lengthj and time toj2/Dl , Dl
being the solute diffusivity in the liquid phase. A nondime
sional temperature is defined asu5C(T2Tm

A)/LA, where
Tm

A andLA are the melting temperature and the latent hea
the pure solvent;C is the specific heat for which we assum
equal values for both solvent and solute, in both phases.
model is presented in full details in@6,9,10#; in the limit (T
2T̄I)!T̄I the governing equations become

]f

]t
5@~12c!n1c#m¹2f2@~12c!n1c#m

3H ~12c!F 1

eA2

dg~f!

df
2

aAu

eA

dp~f!

df
G

1cF 1

eB2

dg~f!

df
2

aB~u1u* !

eBL̃

dp~f!

df
G J , ~1!
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]c

]t
5¹•$l~f!¹c2c~12c!l~f!@HA~f,T!

2HB~f,T!#¹f2c~12c!l~f!G~f,T!¹u%, ~2!

]u

]t
52V0

]u

]x
52V0G. ~3!

In Eq. ~1! g(f)5(1/4)f2(12f)2 is a symmetric double-
well potential with equal minima atf50 andf51; p(f) is
a monotonically increasing function off from p(0)50 in
the solid to p(1)51 in the liquid; with the choicep(f)
5f3(10215f16f2) the bulk solid and liquid are de
scribed byf50 andf51, respectively, for every value o
temperature.

In Eq. ~2! the functionHA(f,T) is given by

HA~f,T!5WA
dg~f!

df
2

vm

R

dp~f!

df
LA

T2Tm
A

TTm
A , ~4!

wherevm is the molar volume andR is the gas constant;
similar expression holds forHB(f,T). The function
G(f,T) is given by

G~f,T!52
p~f!

T2

vm

R

LA

C
~LA2LB! ~5!

andl~f!, defined as

l~f!5
Ds

Dl
1p~f!S 12

Ds

Dl
D ~6!

describes the smooth transition of the bulk solute diffusiv
from Ds ~in the solid! to Dl ~in the liquid!.

The model parametersaA,B,eA,B,WA,B,m,n,L̃,u* were
associated to the physical properties of the alloy compon
by Warren and Boettinger@10#; below only the results are
synthesized:

aA,B5
LA,B

CT̄I

jLA,B

6&sA,B
, eA,B5

hA,B

j
,

WA,B5
vm

R

12sA,B

&Tm
A,BhA,B

, m5
bBsBTm

B

DlL
B ,

n5
bAsATm

ALB

bBsBTm
BLA , u* 5

C~Tm
A2Tm

B !

LA ,

L̃5
LB

LA , ~7!

wheresA,B is the surface tension of pureA or B; bA,B is the
kinetic undercooling coefficient, that relates the interface
dercooling to the interface velocity throughv5bA,B(Tm

A,B

2T). In the phase-field model for a pure substance the
terface thickness is a free and independent parameter tha
been indicated in Eq.~7! throughhA,B. It can be shown@10#
that a model constraint imposeseAAWA5eBAWB; then the
condition is forced:
ts

-

-
has

hB/hA5sATm
B /sBTm

A . ~8!

To estimate the above parameters we referred to the ter
physical properties of nickel~solvent! and copper~solute!,
summarized in Table I. The length scale was fixed aj
52.131024 cm; a realistic value ofhA was selected ashA

51.6831027 cm. With this choice it results inaAT̄I /Tm
A

5395.62, aBT̄I /Tm
B5347.28, eA58.0031024, eB58.02

31024, WA50.965, WB50.961, L̃50.735, m5350, n
51.01. The nondimensional temperature gradient was fi
at G52.3.

The evolution of Eqs.~1!–~3! has been considered in on
spatial dimension, in the domain 0<x<xm with xm large
enough to prevent finite-size effects. Fluxless boundary c
ditions for f,c and transparent conditions foru were im-
posed at the domain’s walls.

To discretize the equations second order in space and
order in time, finite-difference approximations were utilize
Then, an explicit scheme was employed to advance
solution forward in time. To ensure an accurate resolution
both the phase field and concentration profiles,
grid spacing was selected asDx50.5ẽ A; a time step
Dt52.0310210 was required for numerical stability. Excep
for temperatures, dimensionless units will be used to ill
trate the numerical results.

The initial concentration of the alloy is set toc2`

50.056 09 for the solid phase~x,x0 ; f50! and c1`

50.070 68 for the liquid phase~x.x0 ; f51!. This corre-
sponds to an equilibrium temperatureT̄I51706.06 K. Then
the initial temperature profile, defined as

T~x,0!5T̄I1G~x2x0!, ~9!

is pulled toward the positivex direction with constant veloc-
ity V0 . After a transient the solidification front selects
steady interface temperatureTI , following the advancing
isotherms with their same velocity, and the solid pha
grows with uniform concentrationc1` . The solute segrega
tion on the moving front is evaluated computing the ma
mum valuecmax of c(x,t), that identifies the concentratio
cl on the liquid side of the interface. We examined two d
ferent cases, with the solute diffusivity in the solidDs5Dl
and the more realistic situation withDs51026Dl ; we will
first analyze the caseDs5Dl .

Figure 1 shows, in the (c,T) plane, the portion of the
equilibrium phase diagram in which we are interested, co
puted from the data of Table I. The vertical line correspon

TABLE I. Material parameters for the Ni-Cu alloy.

Nickel Copper

Tm ~K! 1728 1358
L (J/cm3) 2350 1728
vm (cm3/mol)a 7.0 7.8
s (J/cm2) 3.731025 2.831025

b (cm/K s)b 160 198
Dl (cm2/s) 1025 1025

aAn average value of 7.4 will be taken.
bFrom the estimation of Willneckeret al. @12#.
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to the valuec1` ; it is also indicated on the graph~dashed
curve! the T0 line, i.e., the locus of the pairsc,T for which
the Helmholtz free energy of the liquid and solid are equ
The solid dots superimposed on the graph represent the
cmax,TI corresponding to the steady solutions found in
numerical simulations; along this path the front velocity
increasing from right to left. It can be observed that, as
velocity increases, the values ofcmax approach monotoni-
cally the prescribed valuec1`50.070 68; this limiting case
corresponds to partitionless solidification and complete
ute trapping. For small velocity a low undercooling is r
quired for the solidification front to advance, and the int
face temperatureTI is only slightly below the equilibrium
liquidus temperature; as a consequenceTI increases with
v. At higher velocities, when the level of solute trappin
nears completion,TI drops with increasing speed, reflectin
an increasing undercooling below the liquidus temperatu

The continuous growth model@3–5# gives the dependenc
of the partition coefficient on the growth velocity in the for

k~v !5
ke1v/vd

11v/vd
, ~10!

where vd is a characteristic velocity describing the diffu
sional solute redistribution across the interface; a nat
choice isvd5D/a, whereD is the interface diffusivity and
a is the thickness of the concentration transition layer. In
same model the dependence of the interface temperatur
velocity is given, for dilute alloys, by

T5Tm
A1

mlc1`

k

@12k1g ln~k/ke!#

12ke
2

v
bA , ~11!

whereml is the slope of the equilibrium liquidus line; th
parameterg is equal tok or equal to unit depending o

FIG. 1. A portion of the equilibrium phase diagram of the Ni-C
alloy, computed from the data given in Table I. The vertical li
corresponds to the value ofc1` used in the simulations. The soli
dots represent the pairs (cmax,TI) corresponding to the steady solu
tions found in the present study. TheT0 line is also indicated
~dashed curve!.
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whether or not solute drag@4,5# is neglected in the dissipa
tion of the free energy that drives solidification.

Figure 2 shows the solute profile normalized asc̄(x)
5@c(x)2c1`#/(cmax2c1`), for v5800. We observe that the
transition ofc̄(x) at the interface takes place within a leng
that is approximatelya5231023; then the diffusional ve-
locity should bevd5500 ~hereD5Dl51!. We utilized this
value to computek(v) through Eq.~10!; in Fig. 3 the results
are reported, along with the numerical valuescmax/c1` ob-
tained in the simulations; as it can be observed, the ag
ment is quite good.

Figure 4 shows the numerical results for the interfa
temperature as a function of the interface velocity; on

FIG. 2. Normalized concentration profile forv5800, Ds5Dl ;
xI represent the position of the solid-liquid interface, identified
f50.5.

FIG. 3. Partition coefficientk(v) vs the front velocity, forDs

5Dl . The solids dots correspond to the valuesc1` /cmax found
with the present model; the solid line represents the prediction
the continuous growth model@Eq. ~10!#.
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same graph we superimposed the curves computed thr
Eq. ~11! with g5k(v) andg51. The temperatures obtaine
with the present phase-field model more closely agree w
the predictions of the continuous growth model when sol
drag is taken into account; as previously argued by Whee
Boettinger, and McFadden@8#, this is due to the fact that th
phase-field model naturally includes surface excesses
their transport during solidification.

When the solute diffusivity in the solidDs is much lower
thanDl , we should expect a reduced effective interface d
fusivity and a lower value forvd . For Ds51026Dl we com-
puted the partition coefficientk(v) as c1` /cmax, and ex-
tracted the value ofvd through Eq.~10! as

vd5v
12k~v !

k~v !2ke
. ~12!

The best fit of the data givesvd5290; then, using this value
in Fig. 5 we compare the predictions of the continuo

FIG. 4. Interface temperature vs the front velocity, ForDs

5Dl . The results of the present model~solid dots! are compared
with the predictions of the continuous growth model with solu
drag ~solid line! and without solute drag~dashed line!.
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growth model@Eq. ~10!# with the present numerical results
here too the agreement is quite satisfactory.

In summary, the phase-field model, in its simpler vers
including only thef gradient correction, has proved able
predict solute trapping in rapid solidification of binary alloy
This point was not previously recognized, as the asympt
analysis in the sharp interface limite→0 @6,7# naturally re-
sults in an instantaneous re-equilibration of solute and
vent across the moving front, with the diffusional veloci
vd;D/e pushed towards infinity; on the contrary solute tra
ping, as shown by the continuous growth model, occurs
the front velocity becomes of the order of, or greater th
vd .

It is worth noting that dropping from the model th
c-gradient term, introduced by Wheeler, Boettinger, and M
Fadden@8# to recover the trapping effect, lowers the order
the differential equation for the solute field, giving a substa
tially different picture of the process, and allows an eas
numerical treatment of the governing equations.

FIG. 5. Partition coefficientk(v) vs the front velocity, forDs

51026Dl . The solid dots correspond to the valuesc1` /cmax found
with the present model; the solid line represents the prediction
the continuous growth model@Eq. ~10!#.
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